 By Joseph Maciejko

Read Online or Download An Introduction to Nonequilibrium Many-Body Theory PDF

Best thermodynamics and statistical mechanics books

Random fluctuations and pattern growth: experiments and models

Lawsuits of the NATO complex research Institute, Cargèse, Corsica, France, 18-31 July, 1988

Thermodynamik der Verbrennungskraftmaschine, Dritte Auflage - Der Fahrzeugantrieb (German Edition)

Aufbauend auf den Grundlagen der Thermodynamik und idealisierten Motorprozessen behandelt das Standardwerk aktuelle null-, quasi-, ein- und mehrdimensionale Methoden zur examine und Simulation des realen Motorprozesses. Dabei werden Fragen des W? rme? bergangs, der Verbrennung, der Schadstoffbildung und des Ladungswechsels er?

Physique statistique

Le quantity five, dernier quantity du cours de body de Berkeley traite des systèmes qui se composent d'un grand nombre d'atomes ou de molécules, et constitue une approche fondamentale de l. a. body statistique et de l. a. thermodynamique

Additional resources for An Introduction to Nonequilibrium Many-Body Theory

Example text

The figures illustrate clearly the Coulomb blockade effect. In Fig. 1, we display the Coulomb blockade diamond plot, the differential conductance dJ/dV as function of gate voltage and bias voltage. Note that linear response theory would give only the Vb = 0 line whereas with the nonequilibrium theory, we get the full bias-gate voltage diagram. In Fig. 2, we plot two cuts of Fig. 1 along Vg , for two values of bias voltage: Vb = 0 (equilibrium case for which the differential conductance dJ/dV is just the equilibrium two-terminal conductance G), and Vb = 1 V (out of equilibrium: the equilibrium conductance peaks split due to the applied bias).

32) will give a nonvanishing contribution to the current. We therefore obtain j = e2 d3 p (2π)3 ∂nF dω vp (vp · E) − 2π ∂ω A(p, ω)Λ(p, ω) from which the conductivity tensor is easily extracted, σµν = e2 m2 d3 p (2π)3 dω ∂nF pµ pν − 2π ∂ω A(p, ω)Λ(p, ω) which is equivalent to the Kubo formula result. 3 One-Band Electrons with Spin-Orbit Coupling 51 where λ(p) is odd in p in general due to time-reversal symmetry, but for simplicity we neglect higher-order terms and assume it is only linear in p. Consider for example a two-dimensional electron gas with Rashba and Dresselhaus spin-orbit coupling, HSO = α(py σx − px σy ) + β(px σx − py σy ) where α is the Rashba coupling and β is the linear Dresselhaus coupling.

The only difference is that the action is obtained by integrating the Lagrangian over the Schwinger-Keldysh contour C instead of over the real axis. 10) To calculate the propagator Gn,kα (τ, τ ), it is appropriate to define the Keldysh generating functional Z[¯ η , J], −i Z[¯ η , J] = Tr ρTc e C dτ :H:− n η ¯n dn − kα c†kα Jkα where η¯n and Jkα are Grassmann sources, and the normalization is such that Z[0, 0] = Tr ρ ≡ Z. 11) η¯=0,J=0 The generating functional has a path integral representation, Z[¯ η , J] = ¯ d]ei D[¯ c, c, d, ¯ S[¯ c,c,d,d]+ C dτ (¯ η d+¯ cJ) where we use the shorthand notation η¯d ≡ n η¯n dn and c¯J ≡ kα c¯kα Jkα .